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ABSTRACT

Human activities in deciduous forests over the past centuries have influenced associated species. To reduce
extinction risks and mitigate population declines, there is growing interest in forest conservation and restoration,
including initiatives by the European Union (EU). For resulting restoration and conservation practices to succeed,
it is essential to know which forest characteristics promote biodiversity conservation. This review is the first
comprehensive systematic meta-review that examines the consistency of relationships between forest structures
and biodiversity in temperate, deciduous forests. Our results suggest that the presence of angiosperm trees and
large seed producing trees, deadwood quantity, older and larger trees, as well as tree cavities relate positively to
the diversity of multiple taxonomic groups, including lichens, insects, birds, and fungi. These findings support the
prioritization of deadwood and presence of old trees as key targets in restoration and conservation practices. In
contrast, the connection between many other forest structures and biodiversity were more ambiguous and varied
between taxonomic groups, emphasizing the need to be explicit about restoration and conservation goals when
formulating targets for forest structures. Even though the relationship between forest structures and biodiversity
was thoroughly studied in reviews, molluscs, reptiles, amphibians, and ground-dwelling invertebrates like spi-
ders and ground beetles were underrepresented. Furthermore, significant knowledge gaps were identified for
some potential important structures such as deadwood in the canopy, tree height, and tree biomass. The findings
of this review show that while some old-growth forest structures can be used as biodiversity indicators, re-
lationships between stand-level structures and biodiversity are difficult to generalize.

1. Introduction

potential to impact a variety of forest-dependent species (Stupak and
Raulund-Rasmussen, 2016; Tinya et al., 2021). Because deciduous for-

Human activities in natural ecosystems, including direct effects of
land use and land-use change and indirect effects such as pollution and
climate change, have influenced biodiversity in many terrestrial eco-
systems (Harfoot et al., 2021). In the temperate region, human impacts
have put a high pressure on forest ecosystems, which has among other
effects led to large-scale loss of primary forests by transforming them
into young production forests globally (Sabatini et al., 2018; Sommer-
feld et al., 2018). Consequently, deciduous forests occurring outside
protected areas are often subject to human disturbances related to
forestry which can profoundly change their structures and composition
(Fischer et al., 2013; Keddy and Drummond, 1996; McGrath et al., 2015;
Vilén et al., 2012; but see Neudam et al., 2023). The possible loss and
structural changes of deciduous forests caused by forestry have the
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ests harbour most of the red-listed forest species in Europe, these forests
are a primary concern for nature conservation (Berg et al., 1995;
Flensted et al., 2016; Springer et al., 2024).

To avoid the extinction of forest-dependent species in temperate,
deciduous forests, the interest to restore and conserve biodiversity
within managed and unmanaged forests has increased. For example, the
EU Biodiversity Strategy has the goal to protect 30 % of the land area by
2030, including EU’s remaining primary and old-growth forest and goals
aligning with rewilding practices, to increase the biodiversity and secure
ecosystem services (EU, 2024). Forest structures can guide these con-
servation efforts by acting as indicators of the state of the forest because
they provide habitats for organisms and are, thus, at least to some extent
linked to biodiversity (Lindenmayer et al., 2000; Zeller et al., 2023). In
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addition, forest structures are generally easier to measure than the
biodiversity of associated organisms (Cosovi¢ et al., 2020). For example,
the European Nature Restoration Regulation uses standing and lying
deadwood, the share of forests with uneven-aged structure, and tree
species diversity as biodiversity indicators (EU, 2024). However, there
may be other forest structures of importance to biodiversity that have
been overlooked, and it is unclear to what extent these biodiversity in-
dicators are consistent across taxonomic groups. Therefore, it is neces-
sary to understand which forest structures sustain high-quality habitats
and associated biodiversity, that in turn can be used to measure the
effectiveness of restoration and conservation practices. In this study, we
define forest structures as bio-physical structures such as deadwood that
can be estimated by its volume or tree size that can be measured as tree
diameter. We focus not only on estimates of amount, but also on the
diversity and distribution of forest structures.

The relationship between habitat structures and biodiversity can
follow two widely discussed, non-mutually exclusive hypotheses.
Firstly, there is the habitat amount hypothesis, which assumes that an
increase in habitat amount — in this case habitat with essential forest
structures — will result in an increase in species richness without it being
affected by the habitat configuration (Fahrig, 2013). The second hy-
pothesis is the habitat heterogeneity hypothesis which states that an
increase in habitat diversity will lead to a higher biodiversity due to the
larger variety of available niches (Tews et al., 2004). Following these
hypotheses, it can be expected that the presence of forest structures that
increase habitat availability and complexity in a forest stand will in-
crease biodiversity. However, these relationships might also be affected
by the spatial scale of heterogeneity (Schall et al., 2018). Furthermore,
since different species have different habitat requirements, we expect it
to be difficult to generalize forest structure - biodiversity relationships
across taxonomic groups, such that structural conservation targets need
to be tailored to conservation/rewilding goals.

Primary studies that looked at the relationship between structural
indicators and biodiversity in forest ecosystems have been summarized
in several reviews (Gao et al., 2015; Oettel and Lapin, 2021; Zeller et al.,
2023). However, most of these reviews focused on a specific species
group, forest structure or management practice, or only included studies
conducted in specific regions (Ishii et al., 2004; Lassauce et al., 2011;
McElhinny et al., 2006; Oettel and Lapin, 2021; Sandstrom et al., 2019).
Reviews that did take into account several forest structures and species
groups have, to our knowledge, focused on European forests in general
and not made a clear distinction between coniferous, mixed, and de-
ciduous forests, among other things due to data constraints (Burrascano
et al., 2023; Gao et al., 2015; Zeller et al., 2023). As a result, it is still
unclear which forest structures are most significant when conserving
biodiversity in deciduous forests and to what extent this depends on the
taxonomic group in focus. This meta-review combines the results of
previous reviews to understand which forest structures are important for
biodiversity, if these results are consistent between different taxonomic
groups, and identifies research gaps within this field. Additionally, we
describe the mechanisms found behind these relationships. The results
can be used to locate forest ecosystems with high nature values and to
improve and understand the effectivity of forest restoration and con-
servation practices.

2. Methods
2.1. Article selection

To understand the relationship between forest structures and biodi-
versity in temperate deciduous forests, we performed a second-order
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synthesis, i.e. systematically summarized the results of previous re-
views. The search was focused on reviews that studied the effects of
forest structures on species diversity metrics in temperate (defined by
FAO, 2018), deciduous forests. We used a PICO to set the search protocol
(Linares-Espinos et al., 2018), in which the Population was defined as
temperate, deciduous forests, the Intervention was non-applicable, the
Comparison was defined as different forest structures, and the Outcome
was multiple measures of aboveground biodiversity, excluding trees. To
decrease the search bias, we followed a pre-determined search protocol
(Fig. 1) and screened articles found within Scopus and Web of Science
(core collection) (Haddaway et al., 2015) after selecting only review
articles in the search engine. To find relevant reviews, we used the
following keywords on the 12th of September 2023:

forest* AND (structure* OR management*) AND (diversity OR
biodiversity OR “species richness”) AND (elm OR beech OR oak OR birch
OR maple OR aspen OR ash OR alder OR lime OR deciduous OR
temperate OR nemoral OR hemiboreal OR broadlea*).

Afterwards, the efficiency of the search was tested by comparing our
search results with reviews recommended by two experts. Two out of
eight recommended reviews were not found during our search due to the
absence of a specified region (temperate, nemoral, or hemiboreal) and
forest type (deciduous forest or deciduous tree species) in their abstract,
title, or keywords. After removing this limitation in the search, the
number of papers increased significantly from 839 to 7239 papers. From
the non-included papers, 200 papers were randomly tested for their
relevance. Of those 200 papers, only six papers included relevant in-
formation, which showed that our search did include most of the
important reviews within this field.

After removing the duplicates between Scopus and Web of Science,
we read the title and abstract of each review and scanned the article in
its entirety to exclude those that did not mention relationships between
forest structures and biodiversity, were written in a non-English lan-
guage, or were inaccessible. Afterwards, each paper was read thor-
oughly and only papers that described the qualitative or quantitative
relationships between forest structures and biodiversity were included,
excluding those that described the connection indirectly by only
mentioning effects of forest management practices (and not resulting
structures) on biodiversity. Furthermore, we excluded relationships
between forest structures and biodiversity that were only mentioned in
the introduction. Lastly, we excluded reviews about soil organisms,
microorganisms, genetic diversity, aquatic diversity, invasive species
and pests, and reviews that did not specify forest types or only included
information about tropical, coniferous, swamp, riparian, or evergreen
forests.

In total, we found 887 review articles (Fig. 1) on the Web of Science
and Scopus. After removing duplicates and non-English articles, 687
papers remained. Of these reviews, we read the title and abstract and
scanned the main text, which led to an additional exclusion of 504 pa-
pers. After thoroughly reading the remaining 183 reviews, 94 papers
were excluded because they did not specify a forest type (n = 14), only
studied coniferous (n = 8), evergreen (n = 4), or non-temperate forests
(n = 14), did not describe a direct link between forest structures and
biodiversity (n = 28), or because they were not review papers (n = 25)
(Fig. 1). Ultimately, 91 review articles were used for this systematic
review. Each review could produce multiple datapoints in our meta-
review by describing several relationships between forest structures
and biodiversity.

2.2. Data extraction

From every review, we extracted data about forest structures that



L.F. Wagenaar et al.

887 papers:

Forest Ecology and Management 596 (2025) 123072

556 Web of Science

331 Scopus

l

< Y .
< Py 1503 Is the paper a duplicate?
Excluding n= 7281No
before scanning
and reading No . . . .
<+——  ~  Written in an English language and accessible
(n=200) T g guag
n=687|Yes
A i .
bStljaCt and UF]e Full article
selection/scanning . —
: selection
main text
No Not only looking at genetic diversity, invasive species, pests, aquatic  __|  No )
n=171 ecosystems, belowground organisms, and microbes n=
i . . . Excluding after
E).(cludmg after Ijo Includes deciduous forests in the temperate region — N,O 70 udmng
title, abstract, n=151 n= reading the full
and main text Judes biodiversi bl | diversi d article
scanning 1:1(143 Includes bio 1fver51ty as response valna e (exc . t{)ele iversity) an _ nN:016 > (n=94)
(n = 504) n= orest structure as explanatory variable
No Includes information about the direct effects of forest structures on 1 No
n=39 biodiversity n=12
|Yes n= 114|Yes
n=183
. . No
Is it a review? =25
‘Yes
. . =2
Suggestions from reviewers ——=—% Included in the analysis = 91 reviews

Fig. 1. Review process: A visualization of the review process.

were mentioned in connection to biodiversity (see S.1. for a full
description of every forest structure found) and the type of biodiversity
metric (diversity, richness, abundances, presence/absence of multiple
species, habitat quality, habitat availability or general effects; see S.2.
for a full description of biodiversity metrics). Additionally, when
possible, we extracted the pattern (positive, negative, mixed or neutral)
of the relationship between each forest structure and the studied or-
ganism(s). Before the analysis, some groups with the same response
patterns found within this study were combined due to limited records
and because the groups were often mentioned intertwined within pa-
pers. Saproxylic beetles were incorporated in the group “saproxylic in-
sects”, ground-dwelling invertebrates were added to “invertebrates”,
rodents and shrews were incorporated in the group “Small non-flying
mammals”, and large herbivores were incorporated in the group
“Mammals”. Furthermore, all insects that were not specified to be sap-
roxylic (e.g. moths, butterflies, bees) were combined into the group
“Insects”. The group “General” was used when the taxonomic group was
unspecified. For each review, we also extracted which continent and
forest type (mixed or deciduous) the review focused on and the review
type (qualitative or quantitative). If the review included temperate and
non-temperate areas, only the locations in the temperate area were
recorded. Similarly, if the review included deciduous and coniferous
forests, we tried to only include information about deciduous forests.

3. Results & discussion
Most of the reviews included study areas within Europe (63 %) and

North America (42 %), and 16 % of the studies included information
from Australia, Asia, or South America. Thirteen papers did not specify

EN (4] o

Number of reviews

w

2010 2015 2020

Year

1995 2000 2005

Fig. 2. Publication year: The distribution of the publication year of studies used
in this review.

any region. The earliest review was published in 1997, but most of the
reviews were published after 2012 (Fig. 2).

Thirty different forest structures were identified to be connected to
biodiversity (Fig. 4a-c; S.1.). Species diversity, richness, and habitat
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Fig. 3. Biodiversity metrics: The distribution of the biodiversity metrics used by the reviews. A review had multiple records if it described multiple relationships.

availability were the most common biodiversity metrics used, respec-
tively (Fig. 3). The relationship between forest structures and biodi-
versity was mostly described at the forest stand and tree level scale and,
less commonly, at the landscape scale. The two most reported forest
structures connected to biodiversity were deadwood volume (49/91
studies) and deadwood type (39/91 studies) (Fig. 4a-c). In addition, tree
diversity, structural diversity, and canopy closure were well reported
(included in 35 %, 31 %, and 38 % of the studies respectively) in
connection to biodiversity. The most common species groups discussed
in the reviews were birds and vascular plants, while information on
molluscs, reptiles, amphibians, spiders and ground-beetles was often
lacking. In the next section, we summarize the effects of forest structures

on the biodiversity found during this study.

3.1. Stand level structures

3.1.1. Tree diversity

The relationship between tree diversity and biodiversity has been
commonly reported in previous reviews (Fig. 4a). Here, the effects of
tree species are defined as the relationship between tree diversity
(n = 39) or tree species composition (n = 18) and biodiversity.

We did not find a clear, consistent positive relationship between the
tree diversity and biodiversity (Fig. 4a). For many non-herbivorous or-
ganisms, like birds and plants, changes in tree structure may have a
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were created with the ggalluvial package (Brunson, 2020).
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higher explanatory power than tree diversity per se because they might
not require a specific tree species to create their habitat niches (Ammer
et al., 2008; Bergen et al., 2009; Felton et al., 2022; Ishii et al., 2004;
Jaroszewicz et al., 2019; Su et al., 2019; Tomiatoj¢ and Wesotowski,
2004). In addition, the effects of tree diversity might also depend on the
spatial distribution of different species within stands, in which aggre-
gations of the same tree species in patches might have a stronger effect
on the biodiversity than a spatially even mixture of tree species (Felton
et al., 2022). However, a positive relationship was occasionally found
for the diversity of insects, mammals, birds, and vascular plants. This
could be the result of a higher habitat heterogeneity, larger structural
complexity, and/or higher productivity as a result of the higher tree
diversity, in turn resulting in more available microhabitats and food
resources (Dieler et al., 2017; Pommerening and Murphy, 2004;
Valencia-Cuevas and Tovar-Sanchez, 2015). For example, combining
different tree species that vary in their bark roughness, pH, and light
penetration, could provide microhabitats for a variety of organisms (see
3.2.4 and 3.1.2).

To understand how tree species composition on a stand scale can

affect the biodiversity, several studies looked at the biodiversity values
of forests with different dominant tree species. Here, beech forests were
often found to have a low (vascular plant) diversity due to their dense
canopies and, therefore, low light conditions in the forest (Leidinger
et al., 2021; Schulze, 2018; Zeller et al., 2023). However, this relation-
ship might also be caused by the often extensive management history of
such forests in the temperate region (Zeller et al., 2023). In contrast, old
aspen and oak forests were found to maintain a high lichen, bryophyte,
and vascular plant diversity because of the high availability of light on
the forest floor (Dey, 2014; Rogers et al., 2020; Tullus et al., 2012). In
addition, both oak and hazel forests often contain many birds and
mammals that forage on acorns and hazelnuts (Dey, 2014). Some or-
ganisms might be affected only by the presence of their host species
instead (Brandle and Brandl, 2001). For example, Nascimbene et al.
(2013) stated that tree composition is one of the most determining
variables for the lichen diversity because lichens can be specialized on a
single tree species.
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Table 1
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The relationships between forest structures and species groups when patterns could be described. The colour indicates the type of pattern — positive relations (green),
neutral relations (blue), mixed results (yellow), and negative relations (red) — that was most recorded for a relationship. A mixed relationship was noted if the highest
recorded relationship occurred < 50 % or if most reviews found varying relationships. The darker the colour, the more papers were found describing the relationship
shown by the colour. The numbers show how many papers described the pattern according to the colour / all papers that recorded a pattern. The stars and circles
(omitted from the “total” column) represent if and how many quantitative reviews were included in these results. A quantitative review that shows the given pattern is
represented by a star while a circle means that a quantitative review showed another result.

Small
Amphi. Arachn. Arthrop. Bats Birds Bryoph. | Carabids Fungi General Insects Inverteb. Lichens Mamm. Mollusc Reptiles msas:rc‘:s ss:e'::ri:; ;I';I:; V::: :::r Vertebr. Total
mamm.
Stand level structures
Canopy closure 2/3° 1/1* 1* 1/1 a* 2° 3 %0 1/1 30 1/1* 2/2* - 1/1 1/1 2 31/48
Canopy gaps 11 2/3* 3/3* 6* 3* 1/1 1/1* 1/1 1 20 1/1 1/1 1/1 26/39
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Canopy height 1/1 1/1
S:z:;‘:yheim 1% y1* | 3arex 1% 1% 2%0 a/a* /1% 1* 171 1/1* /1% 12/18
Tree density /1% 1/1 11 1/1 - -
Tree basal area 1/1* 1/1
Stand age 2/3 %0 2/2* 5/8 **0 3/4*0 3/3 ** 2 2/2 1/1 5/5 ** 2/2 2/2* 2/2 1/1 11 *00 34/48
Succession stage 1/1 3 2 2 11 1/1 6 16
Tree diversity 1/1 2% g *00 30 20 a/a 2/3 2* 1/1 1/1 6* 17/32
Tree structures
Foliage density 1 1/1* 2
Branch size 2/2* 1/1* 171 4/a
it U 22 44 11 33 n 33 1 33 n
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Tree height 2/2 1/1* 1/1 a/a
Tree age 1/1 a/a* 3/3 2/2 3/4% 4/a - 2/2 3/3 2/2* -
Tree diameter 20 2/2 5/5* 2%0 2C 2/2* 2 3/3% 171 1/1 11 1/1* 19/24
Veteran trees 22 2/2* 1/1 33 -
Below-canopy structures

s and mounds . n 7 T Tam
Litter 2/2%* 1% 2/2 23 11 2/2% 2/2* 4 17
:;Z‘::i'&“d 1* 11 1% 2% 22* 33 171 2% 3/3%% ap*x 2/3° 18/23
:’:::;r:::w 1/1* /1 2/3* 1/1 1/1* 1/1* 1/1 7/9
Understory " 171 4 2/2 3/3 3/3 1 1/1 1/1 1 14/18

(presence)

Strong positive relationship (n > 5 & > 80%)
Positive relationship (n > 2 & > 65%)
‘Weak positive relationship (n > 0 & > 50%)

Strong negative relationship (n> 5 & > 80%)
Negative relationship (n > 2 & > 65%)
Weak negative relationship (n > 0 & > 50%)

Weak neutral relationship (n > 0 & > 50%)
Mixed relationship (n > 0 & < 50%)

3.1.2. Canopy closure and canopy gaps

The relationship between canopy gaps or canopy closure and
biodiversity was described in a large number of reviews (Fig. 4a). Even
though these two structures can describe similar forest characteristics,
we here distinguished the effects of these structures by defining — when
possible — canopy closure as the general openness of the forest stand and
canopy gaps as larger contiguous open patches in the forest. Canopy
closure depends mostly on the tree density that is shaped by natural
conditions or management practices, canopy structure, and tree
composition of a forest stand while canopy gaps are created by natural
and anthropogenic disturbances like windthrows, management prac-
tices, and forest fires (Barbier et al., 2008; Felton et al., 2010). Both
canopy gaps and lower canopy densities often increase the light, tem-
perature, and soil moisture (Bauhus and Bartsch, 1995; Hanberry et al.,
2020; Moola and Vasseur, 2008; Xi, 2015). We found that, when adding
all results together, most reviews reported a positive effect of canopy
gaps and a negative effect of canopy closure on biodiversity (Table 1).
However, this result depended on the taxonomic group.

Vascular plants were the most studied species group in connection to
canopy gaps and canopy closure. Most reviews recorded a positive
relationship between light conditions and vascular plant abundance,
regeneration, and diversity (Table 1). Additionally, open forests were
found to improve plant regeneration by, among other things, attracting
more seed dispersers (Kremer and Bauhus, 2020; Wagner et al., 2011).

The positive relationship between canopy gaps and plant diversity was
primarily observed in larger openings and depended on the gap’s shape
(Hupperts et al., 2019; Moola and Vasseur, 2008; Muscolo et al., 2014;
Su et al., 2019). However, studies also showed that the plant species
community in canopy gaps and less dense forests differs from the one in
closed forest ecosystems by sustaining more pioneer plant species
(Balandier et al., 2006; Barbier et al., 2008; Ellum, 2009; Fischer et al.,
2013; Oono et al., 2020; Wagner et al., 2011). Therefore, combining
different types of canopy gaps and canopy densities within a forest
landscape could enhance plant diversity on larger scales (Ellum, 2009;
Mitchell et al., 2014; Muscolo et al., 2014; Su et al., 2019).

The increase in light and temperature conditions caused by more
open canopies can also affect vertebrates. Different relationships were
described between canopy closure or canopy gaps and birds (Fig. 4a;
Table 1). Varying relationships were found between canopy gaps and
bird species richness (Zeller et al., 2023). An increase in bird diversity
could be caused by a denser understory with many habitat resources or
by an improved forage efficiency in open forests (Felton et al., 2022;
Hanberry et al., 2020; Harper et al., 2016; Reilly et al., 2022; Sharpe,
1996). The latter was not only found for birds, but also for bats, which
can result in the higher bat species richness related to canopy gaps
(Fischer et al., 2013; Harper et al., 2016; Zeller et al., 2023). In addition,
reptile species richness and diversity were found to mostly have a pos-
itive relationship with open forests (Table 1), which is likely caused by



L.F. Wagenaar et al.

higher temperatures (Gandhi et al., 2007; Hanberry et al., 2020; Seibold
et al., 2015). For amphibians, the relationship between diversity and
canopy closure and canopy gaps was more ambiguous (Table 1).
Lastly, invertebrate diversity was found to relate to the light avail-
ability and temperature in the forest (Fig. 4a). Especially in colder cli-
mates, increased light conditions — and therefore an increase in
temperature and possibly flower availability — could increase the di-
versity and richness of carabids and spiders (Burton et al., 2018; Gao
et al., 2015), (saproxylic) insects (Gandhi et al., 2007; Hanberry et al.,
2020; Nilsson et al., 2006; Parisi et al., 2018; Perlik et al., 2023; Seibold
et al., 2015; Zeller et al., 2023; Zumr et al., 2021), and lichens (Zeller
et al., 2023), while being negatively or unrelated to fungi and molluscs
(Seibold et al., 2015; Zeller et al., 2023; Zumr et al., 2021) (Table 1).
However, primary studies have found that some insects respond nega-
tively to canopy gaps instead (Staab et al., 2022). Additionally, some
lichens were found to be adapted to intermediate or low light conditions
(Nascimbene et al., 2013; Ulyshen, 2011). Therefore, variable light
conditions may sustain the highest lichen diversity on a larger scale.

3.1.3. Stand age and succession stage

The relationship between stand age and biodiversity was well-
described in the reviews and was mostly positive (Fig. 4a; Table 1). In
contrast, the relationship between biodiversity and successional stage
was less documented and results ambiguous (Fig. 4a; Table 1). Changes
in biodiversity were often explained by a change in tree species
composition and a decrease in light availability and temperature in older
forests (Barbier et al., 2008; Chelli et al., 2023; Su et al., 2019; Zeller
et al., 2023).

The relationship between stand age or succession stage and vascular
plant diversity was found to be dependent on the forest conditions and
the study species (Fig. 4a; Table 1). The mixed results indicate that their
relationship could be non-linear, which could be explained by vascular
plant diversity increasing over time until light and soil nutrients become
scarcer, resulting in a decline in plant diversity (Balandier et al., 2006;
Duguid and Ashton, 2013; Ellum, 2009; Su et al., 2019). Furthermore,
natural disturbances are more common in very old forests, which can
again increase the understory plant diversity if resulting openings are
not rapidly recolonized or replanted by trees (see 3.1.2). The species
composition of vascular plants was also found to change over time,
containing mostly light and nutrient-demanding plant species in young,
open forests and canopy gaps while favouring forest specialists in older,
closed forests (Chelli et al., 2023; Reilly et al., 2022; Su et al., 2019).
When vascular plants disappear, bryophyte diversity was found to in-
crease, as they thrive in forests with lower temperatures and light con-
ditions (Felton et al., 2010; Su et al., 2019). This could explain why most
reviews found a positive relationship between stand age and bryophyte
species richness and diversity (Table 1).

In addition to plants, other organisms have been connected to stand
age and succession stage. Most reviews described a positive relationship
between forest age and arthropods, birds, bats, fungi, lichens, mammals,
insects, saproxylic species, and molluscs (Table 1). These positive re-
lationships were often explained by the occurrence of old-growth forests
structures - e.g., large trees, microhabitats, and a large amount of
deadwood - in older forests (Kellett et al., 2023; Milad et al., 2011;
Nascimbene et al., 2013; Parisi et al., 2018; Zeller et al., 2023). In
addition, the high structural diversity in older forests and their long
continuity could be important for many arthropods and (other) sap-
roxylic species (Hilmers et al., 2018; Kellett et al., 2023; Molder et al.,
2019; Oettel and Lapin, 2021; Parisi et al., 2018; Valencia-Cuevas and
Tovar-Sanchez, 2015). However, young forests in early successional
stages might also be able to sustain a high insect, bat, and bird diversity
(Table 1) due to the large number of flowering plants and openness of
the forest (Nilsson et al., 2006; Reilly et al., 2022; Roberge et al., 2008;
Tomiatoj¢ and Wesotowski, 2004).
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3.1.4. Structural diversity

Structural diversity includes the diversity and complexity of forest
structures described within this review. Most reviews reported a positive
relationship between biodiversity and structural diversity for amphib-
ians, arthropods, birds, fungi, ground-dwelling invertebrates, insects,
lichens, mammals, saproxylic species, and vascular plants (Table 1).
These results were found at multiple spatial scales depending on the
species group. For example, plants and birds were often connected to
structural diversity within a forest stand (Felton et al., 2022; Sjolund and
Jump, 2013), while arthropod and lichen diversity could also be linked
to the structural diversity on trees (Ishii et al., 2004; Sallé et al., 2021;
Ulyshen, 2011). The positive relationships were often explained by the
high number of available niches, microhabitats, and resources in
structurally diverse forests, which is in accordance with the habitat
heterogeneity hypothesis (Acebes et al., 2021; Oono et al., 2020; Sallé
et al., 2021; Toivonen et al., 2023). For species at lower trophic levels,
habitat complexity could also provide shelter against predators (Burton
et al., 2018; Maleque et al., 2009; Ranius et al., 2018).

However, if the habitat heterogeneity is very high, the habitat size
and continuity in a forest might decrease (Fahrig, 2013). As a conse-
quence, species that require habitat continuity or large interior forest
areas — e.g., bryophytes, lichens, saproxylic beetles, and forest specialist
birds - could decline in very diverse landscapes (Felton et al., 2010;
Greenwald et al., 2005; Zeller et al., 2023). This could explain why some
studies found mixed or even negative relationships between structural
diversity and arthropods (n = 1/6), vascular plants (n = 1/7), birds
(n = 1/9), bryophytes (n = 2/3), and fungi diversity (n = 1/3) (Fig. 4a).
However, to evaluate this hypothesis, a more thorough analysis on data
from primary studies, including the life-history traits of species and the
scale of the heterogeneity, would be necessary.

3.1.5. Canopy height and vertical heterogeneity

The connection between canopy height or vertical heterogeneity, i.e.
the variation in canopy height within a stand, and biodiversity was
described less frequently than that of other forest stand structures
(Fig. 4a). Only one review described a relationship between canopy
height and biodiversity, reporting that a reason that an increase in
height relates to a higher arthropod diversity could be larger vertical
gradients and, consequently, habitat niches (Table 1) (Ulyshen, 2011;
Wildermuth et al., 2024). The few reviews that studied vertical het-
erogeneity found a positive relationship between the vertical hetero-
geneity and the bird, invertebrate, (saproxylic) insect, and mammal
diversity and richness (Table 1). This could be due to a higher
complexity and, therefore, microhabitat availability in forests with a
higher vertical diversity (Ishii et al., 2004; Maleque et al., 2009; Oettel
and Lapin, 2021; Ulyshen, 2011; Valencia-Cuevas and Tovar-Sanchez,
2015). Microhabitats created by vertical heterogeneity could be habitats
with various temperatures, wind velocities, leaf areas, and floristic
compositions (Valencia-Cuevas and Tovar-Sanchez, 2015). In contrast,
Zeller et al. (2023) found no or varying relationships between the ver-
tical heterogeneity and the species richness of arthropods, bats, fungi,
vascular plants, and bryophytes, which suggests that the importance of
this forest structure depends on the species group. However, conclusions
per taxonomic group are tentative because of the low number of reviews
on this.

3.1.6. Tree density and tree basal area

Few reviews described the relationship between tree density or tree
basal area and biodiversity (Fig. 4a). Studies found that tree basal area
can have a negative relationship with the vascular plant abundance, but
this was only reported once (Table 1). Furthermore, a couple of reviews
found that the tree density was mostly negatively related to the diversity
of vascular plants and saproxylic species caused by low light penetration
and temperatures in dense forests (Table 1) (Ammer et al., 2008; Dey,
2014; Dey and Schweitzer, 2018; Felton et al., 2022; Kremer and Bau-
hus, 2020; Molder et al., 2019; Xi, 2015). The low number of reviews
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connecting biodiversity to tree density and tree basal area might be
because the relationship between light conditions and biodiversity is
more commonly described by studying the canopy closure.

3.1.7. Stand, canopy, and tree biomass

The canopy and tree biomass were mentioned thirteen times in
connection to biodiversity (Fig. 4a) and the pattern of the relationship
was only described for arthropods, fungi, vascular plants, and bryo-
phytes (Table 1). Here, reviews found that, because many arthropods
occur in the tree canopy, a higher canopy biomass could lead to an in-
crease in species abundance and richness of this species group, accord-
ing to the species-energy hypothesis (Sallé et al., 2021; Ulyshen, 2011;
Wright, 1983). Additionally, a higher tree and stand biomass could lead
to a more complex and heterogeneous forest stand and an increase in
available resources (Parisi et al., 2018; Valencia-Cuevas and
Tovar-Sanchez, 2015). However, for plants, an opposite effect might
occur due to an increase in competition for resources (Su et al., 2019).
Tree and canopy biomass might also be important, overlooked charac-
teristics for other species, since it is related to the age, density, and
productivity of the forest stand, but we did not find enough reviews
studying these patterns to draw any conclusions and this relationship
might vary between different taxonomic groups (Sabatini et al., 2019).

3.2. Tree structures

3.2.1. Tree diameter, age, and height

Tree diameter, age, and height are strongly correlated because an
older tree is likely to be both thicker and taller (Nascimbene et al.,
2013). The relationship between tree diameter or tree age and biodi-
versity has been studied thoroughly in reviews (Fig. 4b). In contrast,
only few reviews have mentioned the relationship between tree height
and biodiversity, which might be because measuring tree height requires
more effort.

Almost all reviews found a positive relationship between tree
diameter, height, or age and (cavity nesting) birds, bats, bryophytes,
fungi, insects, invertebrates, lichens, mammals, and saproxylic species
(Table 1) and such relationships could even be stronger when older trees
occur close to each other in the landscape (Horak, 2017; Nilsson et al.,
2006). The positive effects of large, old trees were mostly explained by
an associated high habitat continuity that these trees provide (Molder
et al., 2019; Ulyshen, 2011). In addition, older and larger trees can in-
crease habitat complexity, improve feeding substrates, and provide
many tree related microhabitats such as cavities of different sizes, which
all can contribute to increasing diversity and abundance of birds,
squirrels, arthropods, lichens, and bats (Asbeck et al., 2021; Berger et al.,
2013; Brandle and Brandl, 2001; Dieler et al., 2017; Drake et al., 2020;
Hiers et al., 2014; Molder et al., 2019; Nascimbene et al., 2013; Nilsson
et al., 2006; Roberge et al., 2008; Rogers et al., 2020; Sharpe, 1996;
Stupak and Raulund-Rasmussen, 2016; Ulyshen, 2011). For example,
oak trees in Sweden were found to develop hollows mainly when they
are older than 150 years (Nilsson et al., 2006). Other microhabitats that
were found to be more common on older trees were rougher barks,
which can provide high-quality habitats for epiphytes, bats, and
bark-dwelling arthropods (see 3.2.4), and flowers (often most abundant
at a medium or old age), that provide food resources for many (in)ver-
tebrates (see 3.2.5) (Berger et al., 2013; Kellett et al., 2023; Nilsson
etal., 2006; Rogers et al., 2020; Ulyshen, 2011). However, some reviews
noted that a variation in tree height, age, and diameter in a forest
landscape is necessary to provide habitats for many different species
(Bergen et al., 2009; Gandhi et al., 2007; Oettel and Lapin, 2021).

3.2.2. Tree cavities

There are two different types of cavities: decay cavities that have
been produced by a combination of wood-decay processes and the ac-
tivity of invertebrates and excavated cavities that have been created by
primary cavity-nesters, e.g. woodpeckers (Remm and Lohmus, 2011).
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Many reviews described a positive relationship between tree cavities
and the habitat availability of many species, and eight studies found a
positive relationship between tree cavities and the arthropod, saproxylic
species, and bird diversity and richness (Fig. 4b; Table 1). These re-
lationships were often explained by that tree cavities are suitable nesting
places for birds and can be high-quality substrates for, among others,
insects and lichens (Berger et al., 2013; Christensen et al., 2005; Drake
et al., 2020; Harper et al., 2016; Martin et al., 2022; Mclver et al., 2012;
Nascimbene et al., 2013; Nilsson et al., 2006; Remm and Lohmus, 2011;
Rogers et al., 2020; Sallé et al., 2021; Vitkova et al., 2018; Zumr et al.,
2021).

Cavities are more common in older and dying trees and the cavity
size depends on the tree age and height (see 3.2.1) (Dieler et al., 2017;
Ulyshen, 2011). Different types of tree cavities were found to be used by
different organisms, increasing the total biodiversity (Tomialoj¢ and
Wesotowski, 2004; Ulyshen, 2011).

3.2.3. Foliage density, branch structure, and crown structure

Foliage density, branch structure, and crown structure have been
reported infrequently in connection to biodiversity (Fig. 4b). The low
number of reviews studying these structures might be due to the prac-
tical difficulty of measuring such structures in the field.

Ishii et al. (2004) and Roberge et al. (2008) found a positive rela-
tionship between branch size and bird and small mammal populations,
because larger branches can provide nesting sites and dens (Table 1).
Furthermore, a complex crown structure and evenly distributed foliage
was found to increase the habitat heterogeneity and, therefore, popu-
lation sizes and biodiversity in a forest (Dieler et al., 2017; Sallé et al.,
2021; Ulyshen, 2011). For example, a complex crown was described to
have a positive effect on arthropod diversity and the presence of various
lichens because it can create different niches that vary in their light, air,
and temperature conditions (Ishii et al., 2004; Molder et al., 2019; Sallé
et al., 2021; Ulyshen, 2011). In addition, complex crowns can provide a
better protection against predators, improving their habitat quality
(Sallé et al., 2021).

3.2.4. Tree surfaces

We found two different types of tree surfaces that were connected to
biodiversity. The most reported one was the tree bark, while the leaf
surface was less studied (Fig. 4b). Several reviews stated that rougher,
thicker barks with bark pockets — often present on older, larger trees —
can increase the diversity of arthropods, insects, bryophytes, and lichens
(Burrascano et al., 2013; Felton et al., 2010; Gandhi et al., 2007; Kellett
et al., 2023; Nilsson et al., 2006; Rogers et al., 2020; Ulyshen, 2011).
This was mostly explained by the high ability of rough bark to hold
moisture and provide hiding spaces for arthropods, which improves the
habitat quality for many species (Gandhi et al., 2007; Kellett et al., 2023;
Schowalter, 2017). Furthermore, the pH of the bark and exfoliating bark
was found to be able to change the species composition of bark-dwelling
organisms and can create important microhabitats for bats and in-
vertebrates (Berger et al., 2013; Drake et al., 2020; Felton et al., 2022;
Nascimbene et al., 2013).

The leaf structure — leaf shape, area, and structures such as hairs and
domatia — was only described in connection to arthropods and the
general biodiversity (Fig. 4b). The few reviews on this reported that
structures that increase leaf complexity, such as domatia, can improve
the habitat quality for some arthropods because they can utilize these
structures to hide from predators (Ulyshen, 2011).

3.2.5. Flowers, fruits, and seeds from trees

Twenty reviews reported the importance of flowers, fruits, and seeds
for the biodiversity (Fig. 4b; Table 1). Flowering trees, including wind-
pollinated trees, contain important, although temporary, food sources —
such as nectar, seeds, and fruits — for many insects (Felton et al., 2013;
Hanberry et al., 2020; Sallé et al., 2021; Ulyshen, 2011; Valencia-Cuevas
and Tovar-Sanchez, 2015). Additionally, many vertebrates, such as
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(small) mammals, reptiles, amphibians, and birds, consume nectar,
seeds, and fruits (Balandier et al., 2006; Hanberry et al., 2020; Hiers
et al., 2014; Sjolund and Jump, 2013). For example, beechnuts, acorns
and hazelnuts were found to be important food sources in temperate,
deciduous forests for many species and could be more important than
conifer seeds (Dey, 2014; Hanberry et al., 2020; Hiers et al., 2014;
Mittelman et al., 2024). No information was found on the relationship
between the diversity or abundance of flowers, seeds, and fruits and
biodiversity specifically, which is necessary to get more in-depth
knowledge on the importance of this structure.

3.2.6. Veteran trees

Veteran trees are trees that provide multiple microhabitats that are
elsewhere described in this review, such as rough barks, hollows, and
dead branches (Horak, 2017; Oettel and Lapin, 2021). The difference
between old trees and veteran trees is that old trees are defined by their
age while veteran trees are defined by the microhabitats that they pro-
vide. Consequently, not every old tree is a veteran tree, however, old
trees are more likely to possess important microhabitats and, thus, be
veteran trees. Veteran trees can increase the habitat heterogeneity and,
therefore, increase the biodiversity in the forest stand (Schulze et al.,
2016). However, only few reviews described the relationship between
veteran trees and biodiversity (Fig. 4b). A positive relationship was
mostly found between veteran trees and saproxylic species diversity,
especially when the trees occur in a sunny environment (Table 1)
(Horak, 2017; Schulze et al., 2016; Zumr et al., 2021). In addition,
Christensen et al. (2005) found that birds sometimes prefer veteran trees
as nesting habitats and foraging substrates.

3.3. Below-canopy structures

3.3.1. Deadwood volume

The most reported forest structure connected to biodiversity was
deadwood volume (Fig. 4c). Saproxylic species and fungal diversity
were mostly suggested to have a positive relationship with deadwood
volume, but even the non-saproxylic species diversity was found to be
positively related to deadwood (Fig. 4c).

The clear positive relationship between deadwood volume and
biodiversity that was found by the reviews (Table 1) could be explained
by deadwood creating many habitats and serving as a food substrate for
many saproxylic species such as fungi, insects, and lichens (Asbeck et al.,
2021; Berger et al., 2013; Bouget et al., 2012; Burrascano et al., 2013;
Christensen et al., 2005; Dieler et al., 2017; Gandhi et al., 2007; Gao
et al., 2015; Gotmark, 2013; Hupperts et al., 2019; Jaroszewicz et al.,
2019; Lassauce et al., 2011; Maleque et al., 2009; Molder et al., 2019,
2017; Nascimbene et al., 2013; Nilsson et al., 2006; Parisi et al., 2018;
Sandstrom et al., 2019; Schulze et al., 2016; Schulze, 2018; Seibold
et al., 2015; Sjolund and Jump, 2013; Stupak and Raulund-Rasmussen,
2016; Su et al., 2019; Vitkova et al., 2018; Zehetmair et al., 2015; Zumr
et al., 2021). In addition, reviews found that vascular plants and bryo-
phytes can use deadwood as a substrate to grow on (Dieler et al., 2017;
Gandhi et al., 2007; Gotmark, 2013; Jaroszewicz et al., 2019; Landuyt
et al., 2018; Moola and Vasseur, 2008; Parisi et al., 2018; Schulze et al.,
2016; Su et al., 2019).

We also found a positive relationship between deadwood volume and
the species richness and diversity of birds and bats (Table 1). These
organisms can use deadwood as a feeding and nesting/roosting substrate
and, additionally, forage on insects that live in the deadwood (Basile
et al., 2023; Drake et al., 2020; Harper et al., 2016; Roberge et al., 2008;
Seibold et al., 2015; Stupak and Raulund-Rasmussen, 2016; Tomiatojé
and Wesotowski, 2004; Zeller et al., 2023). Furthermore, some mammals
and (litter-dwelling) invertebrates had a positive relationship with
deadwood because they can use it as a shelter and can benefit from the
moist environment that it creates (Table 1) (Oono et al., 2020; Parisi
et al., 2018; Perry and Herms, 2017; Stupak and Raulund-Rasmussen,
2016).
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However, not all studies found a positive relationship between
deadwood volume and biodiversity (Table 1). The results might also
depend on the type of deadwood available and the local environmental
conditions in the forest (see 3.3.2) (Lassauce et al., 2011; Vitkova et al.,
2018).

3.3.2. Deadwood type and quality

Deadwood can vary in diameter, tree species, decay stage, position,
and environmental conditions which was found to impact the habitat
quality for organisms (Bouget et al., 2012; Bujoczek et al., 2018; Parisi
et al., 2018). We found many reviews describing how deadwood type
relates to biodiversity (Fig. 4c).

Many of the reviews reported that deadwood with a larger diameter
can host more (red-listed) fungi, lichen, bryophyte, insect, bird, bat,
mammal, amphibian, and vascular plant species because it contains
more microhabitats, resources, moisture, and a stable microclimate with
a slow decay rate (Bouget et al., 2012; Frelich, 2017; Gandhi et al., 2007;
Harper et al., 2016; Liu et al., 2014; Maleque et al., 2009; Mclver et al.,
2012; Molder et al., 2019; Parisi et al., 2018; Perry and Herms, 2017;
Stupak and Raulund-Rasmussen, 2016; Su et al., 2019; Toivonen et al.,
2023; Ulyshen, 2011; Vitkova et al., 2018; Zumr et al., 2021). The latter
results in habitat continuity which is especially important for immobile
organisms that face more difficulties when colonizing a substrate (but
see Komonen and Miiller, 2018). However, Bouget et al. (2012) and
Berger et al. (2013) found that there are also species that specialize on
fine woody debris (FWD) which shows that not all species prefer dead-
wood with large diameters.

Decay stage was also reported to affect the species diversity (Bouget
et al., 2012; Bujoczek et al., 2018; Maynard et al., 2015; Oettel and
Lapin, 2021; Parisi et al., 2018; Sandstrom et al., 2019; Seibold et al.,
2015; Ulyshen, 2011; Vitkova et al., 2018). Early stages of coarse woody
debris (CWD) were found to be more preferred by lichens and small
vertebrates, while vascular plants, saproxylic beetles, bryophytes, and
fungi preferred intermediate or later decay stages (Basile et al., 2023;
Berger et al., 2013; Bouget et al., 2012; Christensen et al., 2005; Seibold
et al., 2015; Stupak and Raulund-Rasmussen, 2016; Su et al., 2019;
Vitkova et al., 2018). Furthermore, tree species with slow decay rates,
such as oak trees, were reported to host many saproxylic species because
of the habitat continuity (Molder et al., 2019; Vitkova et al., 2018; Zumr
et al., 2021). Other types of deadwood that were found to host many
species were substrates of European hornbeams and sycamores while
beech and ash trees were found to attract fewer species (Schulze, 2018;
Vitkova et al., 2018; Zumr et al., 2021).

Deadwood can be found in different positions such as hanging in the
canopy, standing in the forest (i.e. snags and stumps), and lying on the
ground (i.e. CWD, FWD). Studies that compare the species diversity of
lying and standing deadwood have found varying results, which could
be explained by effects depending on the species group studied. Lying
deadwood seemed to be mostly important for ground-dwelling organ-
isms such as ground-living invertebrates, reptiles, amphibians, and small
rodents that can use deadwood as shelter, nesting and/or feeding sites
(Berger et al., 2013; Bouget et al., 2012; Gandhi et al., 2007; Harper
et al., 2016; Liu et al., 2014; Ranius et al., 2018; Roberge et al., 2008).
Furthermore, a higher diversity of fungi and bryophytes was found on
laying logs because of a more stable microhabitat (Christensen et al.,
2005; Parisi et al., 2018; Vitkova et al., 2018). In contrast, birds, bats,
and small mammals such as squirrels were found to use mostly standing
deadwood as feeding, nesting, and roosting sites and stumps were found
to contain a higher saproxylic insect diversity than lying deadwood
(Basile et al., 2023; Berger et al., 2013; Harper et al., 2016; Roberge
et al.,, 2008; Sharpe, 1996; Stupak and Raulund-Rasmussen, 2016;
Ulyshen, 2011; Zumr et al., 2021). Less mentioned - likely due to the
measurement difficulties — was the deadwood in the canopy. This
deadwood might create important microhabitats for canopy-dwelling
organisms such as arthropods (Seibold et al., 2015; Ulyshen, 2011).

Lastly, the environment surrounding the deadwood can affect the
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quality of the deadwood and thereby species composition and diversity
in the substrate (Seibold et al., 2016, 2015; Su et al., 2019). Deadwood
in sunny, warm conditions — especially in colder climates — differs in
species composition from deadwood under a dense canopy and was
found to maintain a higher saproxylic insect, lichen, reptile, and
amphibian diversity (Bouget et al., 2012; Christensen et al., 2005; Felton
et al., 2022; Milad et al., 2011; Molder et al., 2019; Nilsson et al., 2006;
Schulze et al., 2016; Seibold et al., 2015; Vitkova et al., 2018; Zeller
et al., 2023; Zumr et al., 2021). In contrast, molluscs, fungi, and mosses
were reported to prefer more shaded conditions (Parisi et al., 2018;
Seibold et al., 2015; Vitkova et al., 2018; Zumr et al., 2021).

3.3.3. Deadwood diversity

The positive relationship found between deadwood volume and
biodiversity might not only be caused by an increase in the volume, but
also be the result of an associated increase in its diversity (Miiller and
Biitler, 2010; Vitkova et al., 2018). We found that most reviews
described a positive relationship between deadwood diversity and the
biodiversity, even though distinguishing the effects of deadwood di-
versity and deadwood volume is often difficult (Fig. 4c). This positive
relationship has mostly been described for biodiversity in general, sap-
roxylic species, fungi, and vascular plants (Table 1) and could be
explained by the higher diversity of niches that different types of
deadwood can provide (Felton et al., 2010; Jaroszewicz et al., 2019;
Maleque et al., 2009; Miiller and Biitler, 2010; Nilsson et al., 2006; Parisi
et al., 2018; Sing et al., 2018; Su et al., 2019; Vitkova et al., 2018).
However, the relationship between deadwood diversity and biodiversity
was more ambiguous for arthropods, bats, bryophytes, and lichens
(Table 1). This could be the result of a possible decrease in habitat
amount when habitat heterogeneity increases (see 3.1.4) (Komonen and
Miiller, 2018).

3.3.4. Understory vegetation

The understory effects were divided into understory structure (its
density and vertical heterogeneity) and understory presence. The defi-
nition of the understory often depends on the niche of the species. In this
review, we defined the understory vegetation as a vascular plant layer
that occurs below the canopy layer but, in case of bryophytes, lichens
and vascular plants, occurs above the focal species of the review. The
presence or absence of a midstory and understory depends on the den-
sity of the forest layers above. Consequently, not only a dense canopy
layer, but also a dense midstory can decrease the herbaceous plant cover
and an herbaceous plant layer can decrease the bryophyte diversity
(Table 1) (Barbier et al., 2008; Felton et al., 2010; Hanberry et al., 2020).

The presence of a (diverse) understory was stated to mostly increase
the biodiversity (Table 1; Fig. 4c), which could be explained by the
understory containing important habitats and food resources - e.g.
leaves, seeds, fruits, and insects — for birds, mammals (e.g. rodents, large
herbivores), and amphibians (Table 1) (Balandier et al., 2006; Bergen
et al., 2009; Dey, 2014; Felton et al., 2022; Hanberry et al., 2020; Lugo,
2008; Maleque et al., 2009; Mclver et al., 2012; Reilly et al., 2022;
Toivonen et al., 2023; Ulyshen, 2011). Furthermore, a dense understory
vegetation can increase moisture levels in the forest which can improve
the habitat quality of amphibians and small mammals (Mclver et al.,
2012) and increase the species richness of Arachnida (Gao et al., 2015).
In contrast, reptiles might prefer bare mineral soil for basking (McIver
et al., 2012). The relationship between the understory and bird diversity
and species richness varied between reviews and was positive for
shrub-nesting birds, while negative for other species like the
red-cockaded woodpecker (Harper et al., 2016; Hiers et al., 2014; Toi-
vonen et al., 2023).

3.3.5. Pits and mounds

Pits and mounds, often created by treefalls, have mostly been con-
nected to the vascular plant and bryophyte diversity in a forest (Fig. 4c).
The abiotic conditions — such as soil moisture and nutrient availability —
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of pits and mounds are typically different from those of intact soils, thus
providing new microhabitats and therefore different plant compositions
locally (Fischer et al., 2013; Gandhi et al., 2007; Lugo, 2008; Moola and
Vasseur, 2008; Xi, 2015). Consequently, the plant diversity can increase
because of the increase in habitat complexity and heterogeneity in forest
stands (Table 1) (Gandhi et al., 2007; Gilliam, 2007; Lugo, 2008; Moola
and Vasseur, 2008; Su et al., 2019). Pits were found to have a higher
plant diversity than mounds and mostly included plants that prefer soil
moisture, while mounds were preferred by plants that specialize on drier
soils (Gandhi et al., 2007; Xi, 2015). Furthermore, pits and mounds were
reported to have a positive relationship with bird richness and lichen
diversity, but these relationships were only described by one review
each (Table 1).

3.3.6. Litter

Various relationships were described between the leaf litter and
biodiversity (note that soil biodiversity was not part of the review)
(Fig. 4c). First of all, most reviews reported that the relationship be-
tween leaf litter and vascular plant richness could be both negative and
positive, depending on the type, amount, and decomposition rate of the
litter (Table 1) (Barbier et al., 2008; Landuyt et al., 2018). Positive re-
lationships can be explained by leaf litter creating microhabitats with
many nutrients — especially if the decomposition rate is high — and soil
moisture (Barbier et al., 2008; Landuyt et al., 2018; Xi, 2015). However,
negative effects on vascular plant diversity could emerge when leaves
contain high levels of phytotoxic substances, acidify the soil, or when
the leaf layer is very thick (Barbier et al., 2008; Hernandez et al., 2020;
Landuyt et al., 2018). The latter results in a decrease in light conditions
on the forest floor, the inability for seeds to make physical contact with
the forest floor, or the inability for seedlings to penetrate the litter layer
(Barbier et al., 2008; Hernandez et al., 2020; Landuyt et al., 2018; Xi,
2015). Only three reviews included the effects of leaf litter on bryo-
phytes, and found that, by acidifying the soil, the litter layer could
promote bryophyte diversity as long as the layer was penetrable (Barbier
et al., 2008; Su et al., 2019).

Some animal abundances can increase with the presence of a leaf
litter even though this has only been mentioned in few papers (Fig. 4c;
Table 1). For example, salamanders and some small mammals require
leaf litter for shelter against predators and prefer the higher soil mois-
ture on the forest ground (Harper et al., 2016; Mclver et al., 2012).
Furthermore, leaf litter can lead to more forest-dwelling insects which
can attract bird species that forage on these organisms (Felton et al.,
2013). In contrast, lizards might prefer less litter because it can decrease
the ground temperatures in the forest stand (Harper et al., 2016; Mclver
et al., 2012).

3.4. Limitations and research gaps

This systematic meta-review highlights important relationships be-
tween forest structures and biodiversity. However, the results are based
on vote counting without considering data overlaps between reviews
and thus may bias the representation of primary research (Haddaway
etal., 2015). For a quantitative secondary order meta-analysis, there are
formal methods to handle overlap between reviews (Beillouin et al.,
2021; Lajeunesse, 2011), but this method cannot be used when the
analysis includes qualitative reviews. Consequently, there is, to our
knowledge, no method available to correct for this bias. In addition,
both quantitative and qualitative reviews were included in this study to
obtain an overall overview on all potentially significant forest struc-
tures. To account for the difference in review quality, we have added the
availability of quantitative reviews in Table 1 and have been careful
with making conclusions when quantitative studies were showing con-
trasting results. Our results also show that there often is a need for more
quantitative reviews on the effects of forest structures on biodiversity.
These studies are also necessary to be able to separate the effects of
forest structures that are often collinear. Collinearity is a reoccurring
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problem within ecological studies and could lead to possible mis-
interpretations about the mechanism behind observed relationships
(Miiller and Biitler, 2010). Consequently, our review was only able to
study relationships between forest structures and biodiversity. More
quantitative studies could help understand correlative effects in future
studies.

During our meta-review, we found that some forest structures are
still poorly summarized in connection to biodiversity (Fig. 4a-c). For
crown structure, canopy deadwood, tree and canopy biomass, and
canopy and tree height, this could be the result of measurement chal-
lenges and, therefore, exclusion in primary research. Laser technology
may increase our ability to describe such structures in the near future.
Other structures that were underrepresented in the reviews are struc-
tures that are not always described as forest structures, such as the leaf
structure. Not only forest structures, but also some species groups were
underrepresented in reviews. For example, we found that molluscs,
reptiles, amphibians, and ground beetles and spiders were rarely
included in reviews. In addition, most studies focused on the alpha-
diversity of species within a forest stand and did not include the beta-
or gamma-diversity in the landscape. This could lead to a misunder-
standing of the relationship between forest structures and biodiversity
patterns on a landscape scale (Miiller et al., 2023; Schall et al., 2018;
Socolar et al., 2016).

Lastly, reviews were not always consistent with specifying the forest
ecosystems studied within their research. Additionally, studies that did
specify that they studied deciduous forests, often also included results of
other forest types such as coniferous forests and it was not always clear
if, how, and why they combined their results. To deal with this uncer-
tainty, we tried to only collect the information about deciduous forests
when results of different forest types were combined. However, there is
still a likelihood that we included some information about coniferous
forests when reviews were unclear about the separation of the forest

types.
4. Conclusions

This is the first comprehensive systematic meta-review that shows
the (in)consistency of relationships between forest structures and
various taxonomic groups. The results show that a multitude of forest
structures relate to the biodiversity in deciduous forests, but that the
relationships of many (especially stand-level) forest structures are
inconsistent and depend on the taxonomic group and their habitat re-
quirements. While the habitat amount hypothesis could not be
addressed within this review, this finding does support the habitat
heterogeneity hypothesis and suggests that — when trying to restore and
conserve forests with diverse species communities - it is important to
create diverse forest landscapes that include different habitats and
niches. However, some forest structures were found to have a positive
relationship with many taxonomic groups, suggesting their general
importance during forest restoration, rewilding, and conservation.

Many of the forest structures that were consistently reported to have
positive relationships with various species groups were connected to
forest age. For example, stand age, tree cavities, and tree age were found
to be positive related to almost all species except understory plants,
which were sometimes more likely to thrive in younger forests due to
light availability. Other important forest structures that had positive
relationships with almost all study species were the presence of angio-
sperm trees that produce large seeds and deadwood volume. However,
we also found that the quality of deadwood depended on the position,
environmental conditions, diameter, decay stage, and tree species of the
substrate and that different species prefer different types of deadwood.
In addition, the importance of some forest structures, such as canopy
deadwood and biomass and tree height, might be underestimated due to
an under-representation in reviews.

In contrast to deadwood volume, the presence of angiosperm trees,
and tree age, many forest stand level structures, like tree diversity,
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canopy gaps, and canopy closure, were found to have relative weak or
inconsistent relationships to biodiversity in temperate deciduous forests.
This indicates that the use of these structures as biodiversity indicator, as
is partly done in the European Nature Restoration regulation, can lead to
poor estimations of biodiversity values. Instead, general conservation
efforts should first focus on protecting old forests, adding and leaving
deadwood, and allowing for the presence of flowering and seed pro-
ducing trees and older trees, even in production forests. When the
objective is to promote a certain species group, conservation efforts
could include changing canopy densities and adding specific tree species
or a specific type of deadwood that increases the habitat quality of the
focal taxonomic group. Considering different forest structures for
different organisms is a key component of successful restoration prac-
tices and should even be considered on different spatial scales. Such
forest heterogeneity could either be linked to management of production
forests or part of conservation strategies that allow “rewilding” in the
form of natural disturbances.
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