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On the need for a multi-dimensional
framework to measure accessibility to
urban green
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With the recent expansion of urban greening interventions, the definition of spatial indicators to
measure the provision of urban greenery has become pivotal in informing the policy-design process.
By analyzing the stability of the population and area rankings induced by several indicators of green
accessibility for over 1000 cities worldwide, we investigate the extent to which using a single metric
provides a reliable assessment of green accessibility in a city. The results suggest that, due to the
complex interaction between the spatial distribution of greenspaces in an urban center and its
population distribution, a single indicatormay inadequately differentiate across areas or subgroups of
the population, even when focusing on one form of green accessibility. From a policy standpoint, this
indicates the need to switch toward amulti-dimensional framework capable of organically evaluating a
range of indicators at once.

As the share of the worldwide population living in cities is forecast to rise to
68% by 20501, urban greening interventions and nature-based solutions are
increasingly relied upon to improve the health outcomes and the well-being
of urban communities as well as to mitigate the environmental footprint of
cities2,3. The availability of Public Green Areas (PGAs) in a city has been
linked to healthier lifestyles and increased social cohesion, as these are
primarily used for physical activity, leisure, and social exchange4. Studies
have shown that living next to a PGA leads to reducedmortality rates, lower
risk of cardiovascular diseases, and improved mental health and cognitive
functions5,6. PGAs are also effective solutions to pressing environmental
challenges, providing biodiversity support and carbon storage but also
acting as soil protectors and temperature regulators7–10.

Themulti-faceted benefits of urban green found definitive recognition
in the New Urban Agenda, adopted at United Nations Conference Habitat
III in 201611 and in the United Nations (UN) Sustainable Development
Goals12. Particularly, Goal 11.7 emphasizes the need for the universal pro-
vision of safe, inclusive, accessible, green, and public spaces for all demo-
graphics and, specifically, for the most vulnerable. By this principle, health
organizations, local authorities, and various institutional bodies have
established a spectrum of green-related targets for cities. While the World
Health Organization (WHO) recommends access to at least 0.5–1 ha of
public green within 300m of residential locations for urban residents13, the
broad range of benefits associated with exposure to nature has also been
encoded into multi-level targets, setting different green requirements for
increasing distances from residential locations (e.g.,14,15). Similarly, the

recently proposed 3–30–300 paradigm addresses the need for urban green
to percolate into the lives of urban residents at several levels. The paradigm
indicates that three trees must be visible from every home, every neigh-
borhood must have a 30% tree canopy cover, and every home must have a
greenspace within 300m16.

The proliferation of indicators and targets also reveals a progressive
shift of the urban planning paradigm towards more data-driven policy
designprocesses as apathway tohealthier andmore sustainable cities. In this
regard, the development of spatially-resolved indicators is seen as a first
milestone to monitor progress towards specific goals but also to develop
future data-driven urban policies, according to the principle what gets
measured, gets done17,18.

Despite this, there is not yet an established and universally adopted
framework to measure accessibility to urban green. Depending on the
specific application and the available data sources, scholars in this domain
have preferred one indicator to another, ranging from the minimum dis-
tance to the nearest park –using land use data from administrative sources,
open crowd-sourced geodatabases (such as OpenStreetMap (OSM)) or
processed satellite images19–25– tometrics evaluating the total green exposure
from satellite data on land cover or green intensity measured through the
normalized difference vegetation indicator26–28.

Moreover, unlike average city-level metrics, the definition of spatial
indicators poses additional computational andmethodological challengesas
it requires considering the interplay between the spatial distribution of the
population andgreenspaceswithin a city, but also thewalkable catchment of
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each sub-area as resulting from the topology of its street-network. A first
large-scale characterization of green exposure to partially account for this
interplay is provided in the Global Human Settlement Urban Center
Database (GHS-UCDB)29, which includes a measure of the generalized
potential access to green areas. Thismetric captures the immediate exposure
to green, as residents are considered to be exposed exclusively to the green
available within their residential cell, regardless of the characteristics of
nearby areas. A recent study acknowledges the importance of measuring
short-range and long-rangemetrics26. The authors compute green exposure
for buffered regions with three progressively increasing radii around resi-
dential locations for Global South and Global North cities. Despite the
recent progress in the characterization of the interplay between population
and greenspaces, considerations on walkable catchment areas are still pri-
marily neglected in the majority of large-scale studies due to their compu-
tational complexity (conversely, walkable catchments are typically
considered in single-city settings, such as20–23). A first attempt in this sense is
provided in ref. 24 for PGAs within 500m of residential locations.

While the studiesmentioned above examined green accessibility under
the lens of the structural and topological features of urban areas, a strand of
studies has begun integrating behavioral information derived from survey
data or, more recently, from automated user-generated geographic infor-
mation, including social media, sports tracking, mobile phone traces, and
public participation geographic information systems (PPGIS)30–33. By using
real mobility traces, these studies quantify actual greenspaces’ usage and
green exposure levels (or green demand) in contrast to the potential green
accessibility that can be inferred solely from structural considerations.
Although these metrics represent substantial progress in the characteriza-
tion of green accessibility by additionally shedding light on factors like the
perceived quality or safety level of greenspaces, their large-scale imple-
mentation is often hindered by restricted data accessibility. Moreover,
questions have been raised about the representativeness of some of these
data sources, particularly regarding specific demographic groups34,35. Due to
these challenges in implementing behavioral metrics, structural indicators
are still predominantly adopted in evaluating green accessibility.

To the best of our knowledge, there has been no research effort dedi-
cated thus far to investigating the interchangeability of accessibility patterns
derived from various green accessibility indicators and the implications that
theuse of oneor the othermayhave forpolicyplanning.This gap in research
stresses the need for a deeper exploration of how different indicators con-
verge or/and diverge, and concurrently on the development of a coherent
framework for the measurement of all these metrics.

By analyzing the accessibility pictures emerging from three families of
accessibility classes, in this study, we argue that a comprehensive assessment
of green provision in urban environments cannot overlook the inherently
multi-dimensional nature of green accessibility, well-exemplified by multi-
level targets. More specifically, our contribution to the study of green
accessibility unfolds in three main dimensions. Firstly, our methodological
contribution consists of defining a computational framework designed to
operationalize the measurement of three families of green accessibility
indicators—minimum distance, exposure, and per person. This framework
allows forflexibility across various parameterizations, such as greenery type,
minimum size of the preferred green area, and time constraints. These
structural accessibility classes are rooted in green targets and recommen-
dations defined by public health authorities, local governments, and other
relevant stakeholders13–15.The framework, easily extendable todiverseurban
settings –provided sufficient data quality– is currently deployed for over
1040 cities across 145 countries. Accessible to both policymakers and the
general public, it is made available through a dedicated interactive web
platform with a range of functionalities (see Data availability statement).
Our second contribution involves a large-scale evaluation of the stability of
these spatial green accessibility indicators to small changes in their under-
lying parameters.We aim to understand the reliability of fixed thresholding
approaches in constructing spatial indicators by assessing how a fixed
parametrization influences the ranking of areas and population subgroups
within a city. The third contribution of the study undertakes a

comprehensive investigation of the overlap among targets established by
selected institutional bodies. This evaluation seeks to determine the inter-
changeability of accessibility pictures derived from different metrics,
emphasizing the necessity of a multi-dimensional perspective. The results
are presented in three distinct sections, each corresponding to the three
contributions outlined in the study.

Results
Families of accessibility indicators
Building upon policy debate and recommendations of public health
authorities13–15 on green accessibility and exposure, we defined a framework
to measure three families of spatial indicators to characterize access and
exposure to urban greenery, providing a multi-dimensional perspective:
• Minimumdistance: it measures the walking distance from a residential

location to the nearest PGA in minutes.
• Exposure: itmeasures the amount of urban green spaceavailable froma

residential location within a walking time budget, in hectares. In
contrast to the minimum distance indicator, which focuses solely on
green areas that are both accessible and public, the exposure indicator
assesses the overall presence of green features in the vicinity of a resi-
dential area, regardless of their accessibility or intended use. This
approach expands our understanding of greenspace to encompass
additional elements like roadside tree lines. To implement this broader
perspective, we utilize the European SpaceAgency’s 2020WorldCover
database as our primary data source to identify green elements rather
than relying on OSM.

• Per-person: it measures the per person availability of PGAs within a
walking time budget from a residential location, in square meters.
Unlike the previous two indicators, agnostic to population density, it
incorporates the notion of competitiveness in using PGAs for specific
activities. As a result, the level of public green available to a resident
depends on the total green provision and the cumulative number of
people living within the service area of each PGA.

The framework enables a flexible parameterization of all family indi-
cators according to theminimumsize of thePGAs/green features of interest,
the type of greenery, and (when applicable) the time budget. The minimal
geographical unit used in this study is a rectangular square of side equal to
9 arc-sec (around196mat a latitudeof 45∘). The framework canbe extended
to any resolution level, providing enough computational resources. All
distances are computed using the walkable street network and assuming a
base walking speed of 5 km/h (it can vary depending on parameters such as
the slope of a street, its pavement, the presence of stairs, and so on).
Walkable distances can also be customized depending on the specific cap-
abilities of the subject of interest, for example, the elderly population or
residents with limited mobility.

Figure 1 provides a schematic representation of the framework and the
operationalization of each family. A formal definition is provided in the
Methods. The framework is implemented for over 1000 cities worldwide
(Fig. 2). It is available to policymakers and the general public through a
dedicated interactive web application (more information on the function-
alities of the application is provided in theData availability statement of this
manuscript).

Stability of the green accessibility indicators
Institutional targets and guiding principles frequently lack precision
regarding the specific parametrization of an indicator, as illustrated, for
instance, in13,14. However, we have limited knowledge about how changes to
this parameterization affect the relative performance, in terms of green
accessibility, of different city areas and sub-groups of the population. To
address this gap, we analyze the impact of minor changes in the para-
meterization of each indicator family on three dimensions and introduce
–where applicable– an appropriate stability metric.
(i) Thefirst dimension is the ranking, in terms of green accessibility, of the

geographical units composing the city. Wemeasure the stability of the
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rankings induced by two alternative parameterizations using the
Kendall rank correlation coefficient36. Thismetric quantifies the degree
of agreement between two ordered sets based on the ranking of their
elements. In this first dimension, every geographical unit is equally

important for assessing the ranking stability, and information on the
number of residents in each cell is not factored in.

(ii) To account for this, the second dimension extends the first one by
additionally considering the population distribution in the city. Fur-
thermore, rather than evaluating the entire ranking, for this dimension,
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Fig. 2 | Geographical coverage of the study. a The density plot reports the size
(measured as log-population) distribution of cities included in the sample for each
macro-area. Cities in the Russian Federation have all been attributed to Europe.

bThemap displays the number of cities included in the study for each country. Black
indicates that no city was included for the corresponding country. Country
boundaries were imported from OpenStreetMap.
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Fig. 1 | Graphical representation of the three families of accessibility indicators.
The panel displays a schematic representation of the proposed three families of green
accessibility indicators. The indicators are mostly inspired by recommendations of
public health authorities or local governments (as an example,13–15). aMinimum
distance: The indicator measures the walking distance in minutes to the closest cell
with a PGA with selected characteristics in terms of size and type of green for each
residential cell. In the top-left panel, the red cell is the cell of interest. The remaining
cells are nearby cells with a PGA, whose color is proportional to the distance to the
cell of interest. b Exposure: The indicator measures the cumulative size of green
features (in hectares) available within a walking time budget from a residential cell.
In the top-right panel, the red cell is the cell of interest. The area within the walking
time budget from the cell of interest is depicted with a dotted line. c Per-person: This

indicator is computed in two steps. In the first step, all residents in the urban center
are apportioned to PGAs—within the corresponding walking time budget— pro-
portionally to the size of the PGA. In the second step, for each residential cell, the per-
person indicator is computed as the ratio between the size of PGAs within the
walking time budget from the cell of interest, and the total number of residents
apportioned to these areas—irrespective of their residential location. In the bottom
panel, the cell of interest, its residents, and the areawithin the correspondingwalking
time budget are depicted in black. The same information for competitor users from
other residential cells is depicted in pink and blue. d Summary of the para-
meterization of each family of indicators. A formal definition of each family of
indicators is provided in the Methods.
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we adopt a policy perspective by examining the stability of the popu-
lation located at the lower endof the ranking,whichmaybe the focusof
policy interventions. To this scope,wepropose two targeting strategies.
With the first strategy, labeled naive targeting, we target the y% worst
performingpopulation, irrespectiveof the actual performance;with the
second strategy, labeled most-disadvantaged targeting, we target sub-
groups of the populationwith low performance in either absolute term
or relative to the rest of the population (see Methods). We then define
the stability of an indicator to any two parametrizations (baseline vs.
alternative) under a targeting strategy as the share of the overlapping
targetedpopulation (seeMethods). For a stability level s, theproportion
of the target population under one parameterization that would not be
targeted under the alternative one (hereafter: conflicting target popu-
lation) is given on average (across the two parameterizations) by ð1�sÞ

ð1þsÞ.
(iii) As a third dimension, we compute the observed inequality level under

the indicator’s specific parameterization,measured through aweighted
Gini indicator37.

The two initial dimensions are grounded in the considerations of policy
design. Although there is no universally agreed-upon planning strategy,
there is a consensus that interventions should focus on left-out subgroups of
the population to mitigate urban inequities38. The inclusion of the third
dimension stems, instead, from the growing use of the Gini indicator in
measuring urban inequalities in green accessibility studies39–42.

Figure 3 illustrates the stability of the minimum distance indicator in
response to variations in the minimum size of the PGA across our entire
sample of cities (mean and inter-quartile range (IQR)), cities exceeding 1
million inhabitants (mean and IQR), and selected major urban centers
worldwide. The assessment of parametrizations considers PGA sizes up to
5 ha against a baseline of 0.5 ha, while larger parametrizations are evaluated
against a baseline of 7.5 ha. This two-step evaluation better ensures that the
comparison is provided between PGAs of similar sizes and, potentially,
similar usage.

We observe a consistent decline in the median stability level as the
minimum size of the PGA increases for both the targeting approaches.
This trend is consistent among all cities regardless of population size.
Notably, higher stability values at the area level (Fig. 3-Rank correlation)
maymask significant reshuffling at the bottom of the population ranking.
Under the 2% naive targeting strategy, the median stability level across all
cities shifts from 0.77 [IQR: 0.48–1] for a parameter change from 0.5 ha to
1 hectare to 0.53 [IQR: 0.28–0.94] for a shift to 2 ha. This corresponds to a
conflicting target population of 12% [IQR: 35%–0%] and 30% [IQR:
56%–3%], respectively. These results underscore substantial variability in
stability depending on the specific green configuration of theurban center,
along with concerning levels of instability, particularly in selected large
cities. For instance, using the same parameterizations (minimum PGA
size of 0.5 ha and1 ha), the stability levels for Sydney (AUS),Rio de Janeiro
(BRA), and London (UK) are 0.32, 0.36, and 0.47, respectively, corre-
sponding to conflicting target population levels of 51%, 47%, and 36%.
Similar trends emerge with the more restrictive most-disadvantaged tar-
geting strategy, which tightly focuses on populations with low accessibility
levels and employs different targeting levels from the naive targeting
approach (see Supplementary Information (SI)). A visual assessment of
the changes in the targeted population for the city of London (UK) is
provided in the maps in the top row of Fig. 3, which display—in a scale of
reds –targeted areas using the 2% naive targeting strategy under five
parameterizations, with the intensity of the palette being proportional to
the number of people living in the area. From the graphical comparison,
we observe that:
1. For small changes in the parameter (e.g., from 0.5 ha to 1 ha), most of

the stable population (i.e., populations targeted under both para-
meterizations) is concentrated in low-density areas. While some (but
fewer)higher-density areas are targeted inboth scenarios, they tendnot
to overlap. It is worth noticing that this is not only a peculiarity of
London but holds for most cities. Indeed Fig. 4 shows that the ratio
between the population density of areas associated with a conflicting
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Fig. 3 | Stability ofminimumdistance indicator with respect to theminimum size
of the PGA. a The maps depict in red target areas in London (UK) according to the
2% naive targeting approach for the minimum distance indicator with increasing
minimum PGA size (from left to right: 0.5 ha, 1 ha, 2 ha, and 5 ha). The intensity of
the red is proportional to the number of residents in the cell. b The charts depict the
level of stability of the minimum distance indicator to different parameterizations
and according to different stability metrics for six cities across all continents. The
Most-disadvantaged targeting targets residents performing worse than three times

the mean citizen. For the Rank correlation, 2% naive targeting and the Most-
disadvantaged targeting, the comparison is provided with respect to the para-
metrization with minimum size equal to 0.5 ha for minimum sizes up to 5 ha and to
7.5 ha for larger minimum sizes. For the Gini indicator, the chart reports the indi-
cator’s value under several parametrizations. c The charts report the median value
(solid line) and the IQR (shaded area) of the stability metrics for all cities in our
sample (black) and for cities with more than 1 million inhabitants (blue). A formal
definition of each stability metric is provided in the Methods.
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target population and areas with a stable target population is
consistently above 1.

2. The degree of clustering of targeted areas increases along with the
minimum size of the PGAs. This is due to the physical and geo-
graphical constraints of larger PGAs, which are typically fewer and less
scattered around the city than smaller PGAs.

Finally, we explore the impact of parametrizations on the level of
inequality within a city as measured through a weighted Gini indicator.
Interestingly,wedonot observe any typical pattern across cities.While some
cities experience decreasing levels of inequality (e.g., Singapore (SGP)) as we
increase theminimum size of the PGAs, others show increasing levels (New
York (USA)) or U-shaped patterns (Sydney (AUS) and London (UK)).
While this is likely to result from the interplay between the size composition
of PGAs within a city and its spatial distribution, we do not assess the
existence of specific regularities. Similar figures for the stability of the
exposure and per-person indicators against the time budget (for both) and
the minimum size of the PGAs (for the latter only) are provided in the SI
(Supplementary Figs. 5–6) and the sensitivity analysis to the y parameter of
the targeting strategies for all indicators (Supplementary Figs. 7–10). For the
exposure indicator, we observe a median Rank correlation for cities in our
sample of 0.69 [IQR: 0.63–0.74] for a shift in the time budget from 5 to
10min andmedian stability levels of the 2% targeting strategy of 0.38 [IQR:
0.23–0.63] for a similar change in the time budget. See Data availability
statement for the release of detailed stability metrics across our entire
sample.

Stability of targets set by selected institutional bodies
This section focuses on the interplay between seven selected green acces-
sibility indicators and the related institutional targets set by global public
health organizations and local authorities. First, we evaluate the perfor-
mance of a city against the targets. Subsequently, similar to the previous
section, we analyze how the fraction of the populationmeeting these criteria
is stable across different parametrizations. A comprehensive operational
definition for each indicator and the corresponding target is outlined in
Table 1. While an indicator provides a detailed accessibility metric, a target
binaryizes the indicator by distinguishing values thatmeet the target criteria
from those that do not.

The existence of well-defined green targets naturally induces a metric
to measure the performance of cities in terms of green accessibility, i.e.,
measuring the proportion of the inhabitants of a city that satisfies the pre-
scribed target. By coupling information on the green indicators and the
population density, we estimate the proportion of the population meeting
each target in each city. Figure 5a provides an overview of the performance
of cities in our sample for each target, categorized by geographical area.
Consistent with findings in other studies26,43, we observe a distinct geo-
graphical pattern across most indicators. Cities in Europe and Australia-
Oceania generally outperform cities in the Global South and North
America, particularly concerning minimum distance indexes and the per-
personmetric.While this pattern is lesspronounced for the exposuremetric,
cities in Asia and Africa still exhibit more significant variation around the
median thanother geographical areas. Regardless of geographical location, a
larger proportion of the urban population typically meets the exposure
target than other targets. This disparity is more pronounced for cities in the
Global South, where available green spaces are less likely to be organized in
structured public areas, and for North American cities, which are often
characterized by extensive suburbs with predominantly single-family
homes featuring private gardens but fewer public spaces. The prolifera-
tion of green indicators reflects a recent surge in interest from local
authorities and public health bodies in promoting greener urban environ-
ments. It also acknowledges the diverse array of benefits associated with
exposure to nature. However, this proliferation reveals the existence of
concurrent authorities, often operating at the same level, each establishing
independent goals. In Fig. 5b, we evaluate the interchangeability of the
accessibility perspectives derived from these indicators. Similarly to the
previous section,wequantify thedegreeofdisagreementbetweenanypair of
two indicators for each city through the stability of the population not
satisfying the target (henceforth: targeted population) proposed by the
institutional body. We observe greater stability for indicators within the
same class than across indicators belonging to different classes. The lowest
stability is observed between the WHO indicator and the ESA, reflecting
differences in the types of green features incorporated in these indicators,
particularly the inclusion of elements beyond parks, grasslands, and forests
in the latter. When comparing the three short-distance MD indicators, we
note a smaller overlap in the targeted population between WHO and B1
compared to the overlap betweenWHOandN1.Thedistinction arises from

Table 1 | Operational definition of indicators and targets pro-
posed by institutional bodies

Name Type Size Distance Target Data Source

WHO MD 0.5 ha 5min 5min OSM 13

B1 MD 0.5 ha 10min 10min OSM 15

N1 MD 2 ha 5min 5min OSM 14

B2 MD 10 ha 15min 15min OSM 15

N2 MD 20 ha 25min 25min OSM 14

B3 PP 0.5 ha 15min 6mq2 OSM 15

ESA EXP 100mq2 5min 0.5 ha ESA 13

The proposed indicators are inspired by targets set by local authorities and public health bodies
worldwide. An indicator is an underlying metric measuring whether an area satisfies the corre-
sponding target. For instance, theWHO indicatormeasures thewalkingdistance inminutes from the
closest PGA of at least 0.5 ha, and an area satisfies the WHO target if the walking distance to the
closest PGA of at least 0.5 ha is no more than 5min. Column Type identifies the family of the
indicator. Column Size refers to the minimum size of greenspaces extracted for the computation of
the indicator. ColumnData refers to the data source used to extract greenspaces. It should be noted
that the ESA indicator is the only indicator using green data from the WC-ESA 2020.
MD Minimum distance, PP Per-person, EXP Exposure.
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variations in the former’s time threshold and the latter’s minimum size,
suggesting that the time dimension has a more significant impact than the
size of the PGA in short-MD evaluation on the definition of the city per-
formance and the targeted population.

Discussion
Implications of the study
While recent studies on urban greenery accessibility often compare cities or
specific areas using a single indicator (for example20–23), this study empha-
sizes the importance of recognizing the inherently multi-dimensional nat-
ure of green accessibility in urban environments. After introducing a
framework to evaluate three families of structural green accessibility indi-
cators organically, the framework examines the similarity of accessibility
outcomesarising from indicatorswithin the same family but under different
parameterizations across distinct families and according to institutional
targets.

The findings in the first part of our study indicate significant instability
in the ranking of both areas and populations, following perturbations in the
parameterization of selected indicators. From a policy perspective, this
suggests that relying on a single set of parameters may provide insufficient
discrimination across areas and population subgroups with limited access,
as the rankings induced by the indicators are not stable to minor changes.
This emphasizes the need to evaluate the impact of fixed parameterization
when assessing the relative performance of areas/population subgroups in a
city with respect to a specific structural green accessibility metric. In addi-
tion, the analysis shows that consistently under-performing areas are typi-
cally less densely populated than so-called conflicting areas, entailing an
additional challenge from a policy design perspective, as these stable areas
may not be sufficiently populated to bemeaningful targets for intervention.
It is important to stress that the simplistic ranking-based prioritization
strategies assessed in the initial phase of this study do not seek to represent a
comprehensive policy-design process realistically. On the one hand,
numerous real-world factors, such as environmental or financial con-
straints, could impede the feasibility of greening interventions in severely

under-performing areas. On the other hand, valid reasons may exist to
prioritize specific demographic groups, suchas older adults or children,who
may face more restricted mobility within the city. Furthermore, realistic
policydesign processes in urban environmentsmust address complex issues
like green gentrification phenomena and actively promote citizen partici-
pation through the use of co-creation approaches44–49. Given our study’s
broad geographical scope, we could not detail these considerations. Instead,
we focused on the identification of subgroups of the population that are
consistently (e.g., across several indicators or perturbation of the same
indicator) under-performing, seen as a first step towards the design of
interventions to promote the reduction of urban inequalities effectively38.

The second part of the study focuses on specific institutional targets,
aiming to evaluate the interchangeability of the induced accessibility pic-
tures. Similar to the preceding analysis, the interchangeability between any
two targets was assessed by examining the extent of overlap in populations
that do not satisfy the criteria, e.g., potential target populations for inter-
ventions. Unsurprisingly, the findings suggest a limited degree of inter-
changeability for indicators from different families (e.g., minimum distance
vs. exposure) or those aiming to capturedifferent formsof greenaccessibility
(e.g., short distance to small PGA vs. longer distance to larger PGA). This
confirms theneed to evaluate each formof green accessibility independently
to provide a comprehensive picture in line with the multi-target recom-
mendations of specific institutional bodies14,15. More interestingly, sub-
stantial discrepancies also emerged among targets seeking to capture similar
forms of accessibility (e.g., targets WHO, B1, and N1, all short-distance
indicators). This latter observation reinforces the results from the earlier
section on the impact of a fixed parameterization, here adopting more
realistic targeting approaches designed by specific institutional bodies.

While single-indicator approaches have been shown to performwell in
studying the impact of green accessibility and exposure onoutcomes such as
human health and wellbeing (as in ref. 28), both sets of results of this study
suggest that adopting a multi-indicator framework would provide a more
nuanced picture of green accessibility. Such a framework serves a dual
purpose: (1) assessing the impactof afixed-threshold approach inducedby a
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Fig. 5 | Indicators and targets proposed by institutional bodies. a For each
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specific parameterization of an indicator and (2) organically evaluating
multiple forms of green accessibility concurrently. This multi-dimensional
approach becomes crucial for obtaining a comprehensive understanding of
urbangreenaccessibility, accounting for thenuances associatedwith various
institutional targets and diverse forms of accessibility metrics, but also to
overcome the limitation associated with fixed-threshold structural
indicators.

Limitations of the study and future research
Despite the effort devoted to cleaning and processing the data to ensure the
best possible standards, the main limitation of our work concerns the
completeness of themapping of green features in OSM. To limit the impact
of this potential data bias, we undertook a series of filtering and checks to
assess the quality of the OSMdata in each urban center (see SI), resulting in
more than halving the initial sample of cities (from around 2500 to 1040).
However, the accessibility metrics that we measure intrinsically depend on
the quality of these data, so lowgreen feature qualitywouldnecessarily result
in biased indicators. To promote transparency and facilitate the identifi-
cation of these biases, we make all our data (including the raw data) easily
navigable to the public with our interactive platform. Nonetheless, we deem
the impact of this issue on the stabilitymetrics performed in this study to be
limited as the comparison is always provided within the same city rather
than across cities. As such, this limitation does not undermine the main
take-home message of this study. Another limitation of the work concerns
the definition of PGAs for the minimum distance and the per-person
indicators. Our definition of urban green relies entirely on the mapping of
areas in OSM and, as such, on the assessment of the correct tag by the
mapper(s). In the presence of heterogeneous standards for the mapping of
PGAs, the characteristics of a PGA in terms of the level of green, type of
services, and characteristics of the vegetation may vary, mainly depending
on the country or the climate zone of the urban center. Once again, the
interactive platform provides an initial attempt to control for this variability
by allowing the user to customize the type of green to incorporate in the
indicator, from amore restrictive definition to a more extensive one. Along
these lines, one potential avenue for future research involves expanding the
framework by incorporating new data layers. These additional layers could
automatically enrich the characterization of urban green areas with policy-
relevant features, such as the availability of services and facilities, biodi-
versity levels, and other environmental quality or safety metrics. While
collaboration with local authorities can inform this feature-augmentation
process, extending it to large-scale evaluation poses notable challenges. An
associated research direction evaluates the various data sources available for
extracting green features, considering their completeness and suitability for
constructing green accessibility indicators. Although our initial attempt in
this direction is outlined in the Supplementary Information of this study,
our evaluation is currently limited to two data sources. Future research
efforts are necessary to assess the diverse sources available systematically.

Methods
Definition of urban centers
Urban centers (UCs) –or cities, here used interchangeably– were defined
according to the boundaries in the Urban Centre Database of the Global
Human Settlement 2015, revised version R2019A (GHS-UCDB)29. UCs in
theGHS-UCDBare not based on administrative entities but on specific cut-
off values on the resident population and the built-up surface share in a
1 × 1 km global uniform grid. Out of 13,000 urban centers recorded in the
database, we retained the most populated 50 UCs per country (the inter-
nationally recognized three-letter ISO code identifies a country), provided
that they had at least 100,000 inhabitants. We further excluded UCs for
which the quality of the OpenStreetMap (OSM) data50 was deemed insuf-
ficient according to the procedure described in the section Data cleansing
and processing of the SI. The data validation was performed by comparing
the green intensity appearing from OSM data (based on an extended defi-
nition of green)50 to the green intensity from the World Cover data 2020
from the European Space Agency (WC-ESA)51 and defining ad-hoc

acceptance intervals for urban centers with different size and average green
intensity based on the level of similarity observed for a set of reference cities.
The final sample comprised 1040 UCs across 145 countries.

Geographical units of analysis
The geographical space of each UC was divided into a regular grid with a
spatial resolution of 9 arcs (geographic projection:WGS-84),mimicking the
grid of the population layer of the Global Human Settlement 2015 (GHS-
POP)52. Cells in the grid are the smallest geographical unit of analysis for this
study,meaning that allmetricsweremeasured at this geographical level and,
whenever appropriate, aggregated into higher geographical units (e.g., UC).

Definition of PGAs and other green features
In the manuscript, the terms PGAs and greenspaces are used inter-
changeably to indicate accessible green areas of public use. The terms urban
green, green infrastructure, and green coverage instead are used to refer to all
green features in an urban center, regardless of their use or their degree of
accessibility. For each city, PGAs were extracted from OSM data following
the pipeline described in the SI and reclassified into three classes: parks,
grass, and forests. For each city, the green infrastructure is extracted from the
WC-ESA 2020 (codes: 10, 20, and 30) following the pipeline described
in the SI.

Data sources
For each UC, the accessibility metrics presented in this study were con-
structed by combining information from three data sources: 1 - the GHS-
POP52, which provides granular worldwide population estimates (2015)
based on census data and satellite information on built areas. 2 - OSM50

(accessed in May 2022). OSM data were used to extract spatial information
on the location of PGAs used for theminimum distance and the per-person
indicators and to compute walking distances within any two cells in the city.
3 - the World Cover data 2020 from the European Space Agency (WC-
ESA)51, which provides the land cover inferred by Sentinel-1 and Sentinel-2
data at a 10m resolution. WC-ESA data were used as the source of infor-
mation on green elements for the exposure indicator. In addition, the WC-
ESA data were used to validate the sample of UCs described in section
Validation of the sample of cities of the SI.

Pre-processing of the data
For each UC, the data pre-processing comprised five phases – described in
detail in section Data cleansing and processing of the SI.
1. Extraction of the city boundary from the GHS-UCDB29.
2. Extraction of the population distribution from the GHS-POP52, by

clipping the worldwide information with the boundary of the UC
bufferedwith a 3-km radius. The 3-kmbufferwas applied to ensure the
computation of the accessibility metrics was not biased for cells near
the boundary of the UC.

3. Extraction and processing of the OSM data on PGAs. This phase
consisted of three sub-steps. 1- extraction of a local osm.pbf dumps
from the osm.pbf of the corresponding continent by clipping the
continent-wide file with the boundary of the UC buffered with a 3
kilometers radius. 2 - extraction of all relations and closed ways
associated with PGAs from the local dump; 3 - remapping of the
information on the PGAs to the base-grid used for the analysis.

4. Extraction and processing of the data on green coverage from theWC-
ESA 202051. This phase consisted of two sub-steps. 1- extraction of a
local .tiff from the global .tiff by clipping the worldwide file with the
boundary of the UC buffered with a 3 km radius, following the
procedure described here. 2 - remapping of the information on green
coverage to the base-grid used for the analysis.

5. Computation of the walking distance matrix for the centroids of the
base-grid using the foot profile of the Open Source Routing Machine
(OSRM) engine53 and the local osm.pbf file extracted at point 2.

The data was pre-processed in Python, JavaScript, and PostGIS.
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Accessibility indicators
Following the policy recommendations on accessibility to nature in
urban environments (as an example,13–15), we operationalized three
classes of accessibility indicators -minimum distance, exposure, and per-
person. In what follows:N c is an ordered set of N elements representing
the cells within the city boundary in the population grid of city c;Mc is
an ordered set of M elements representing the cells in the extended
(3 km-buffered) grid for city c,Dc (Dþ

c ) is an (N ×M)-matrix ((M ×M)-
matrix) where each element di,j (d

þ
i;j) represents the walking distance (as

per street-network) inminutes between the i-th element ofN c (Mc) and
the j-th element of Mc.

Minimum distance. This class of indicators measures the walking dis-
tance (in minutes) from a residential location to the nearest PGA. The
indicator can be parameterized according to the minimum size of the
green area and the type of green (combinations of parks, forests, and
grass). For each cell i in the population gridN c, the indicator is defined as:

mdi;c ¼ minðDi;c � gdcÞ ð1Þ

i.e., theminimum of the Hadamard product between the i-th row ofDc and
the M-dimensional vector gdc taking value 0 or 1 to indicate the absence/
presence of a green feature (withgivencharacteristics in terms of size/typeof
green) in the corresponding cell of the extended gridMc.

Exposure. This class of indicators measures the overall amount of urban
green available within a time budget (tmin) from a residential location in
hectares. As for the previous class, the indicator can be parameterized
according to the value of t and the minimum size of the green area. For
each cell i in the population gridN c, the indicator is defined as the sum of
the green intensities measured on cells no more than t-minutes away
from the cell of origin. I.e.:

expi;t;c ¼ 1ð0;t�ðDi;cÞ× gic ð2Þ

where 1ð0;t�ðDi;cÞ is an indicator function mapping each element of theM-
dimensional vectorDi,c to 0 if di,j is greater than t and to 1 otherwise. gic is an
M-dimensional vector representing the size of the green features (with given
characteristics in terms of size) in the corresponding cell of the extended
gridMc.

Per-person. This class of indicatorsmeasures the per-person availability
of PGAswithin a time budget (tmin) froma residential location in square
meters. As for the previous classes, the indicator can be parameterized
according to the value of t, the minimum size of the green area, and the
type of green. For each cell i in the population grid N c, the indicator is
computed as:

ppi;t;c ¼ 1ð0;t�ðDi;cÞ× gppt;c ð3Þ

where gppt,c is anM-dimensional vector representing the squaredmeters of
green available per-person in the corresponding cell of Mc. More
specifically, gppt,c is computed by dividing the green available in each cell
by the total confluent population. I.e.:

gppt;c ¼ gic � APðt;cÞ ð4Þ

where⊘ refers to element-wise division, AP is the M-dimensional vector
whoseelementapj,t,cequals theconfluentpopulation (for the time-threshold t)
of the j-th element of Mc. The affluent population of cell j is computed by
assigning – for each residential cell i – shares of the population to cells inM
within the time-budget t proportionally to the size of the available green in j.
Formally, the confluent population of cell j inM for time-budget t is defined

as:

apj;t;c ¼
X

i2M
Pi

1ð0;t�ðdþi;j;cÞ � gij;cP
m2M1ð0;t�ðdþi;m;cÞ � gim;c

ð5Þ

Stability metrics
Weevaluate the stability of eachaccessibility indicator to its parametrization
through three metrics—the Kendall rank correlation coefficient across
areas, the proportion of stable targeted population according to a naive
targeting approach, and the proportion of stable targeted population
according to a most-disadvantaged targeting approach. A formal definition
of each metric is provided below.

Kendall rank correlation coefficient. Let RInd(x)[N] be the ranking
induced by the accessibility indicator Indwith parametrization (x) on the
set of cell N c of the urban center c. The Kendall rank correlation
coefficient36 between two parametrizations (1) and (2) of indicator Ind is
given by:

τ ¼ 1� number of discordant pairs
N

2

� � ð6Þ

where two pairs n1 and n2 in N c are said to be concordant if either
RInd(1)[n1] < RInd(1)[n2] and RInd(2)[n1] < RInd(2)[n2] or
RInd(1)[n1] > RInd(1)[n2] and RInd(2)[n1] > RInd(2)[n2], otherwise they are
discordant.

Naive targeting approach. Let Ind(x)[N] be the accessibility indicator
Ind with parametrization (x) on the set of cell N c of the urban center c.
For the minimum distance indicator, let t?xðyÞ be

t?xðyÞ ¼ min t :

P
n2N c

Pnð1� 1 0;t½ ÞðIndx½n�ÞÞP
n2N c

Pn

" #
� 100≥ y

( )
ð7Þ

i.e., t?xðyÞ is the cutoff value of the indicator associated to the y% targeting
strategy. Recalling that, unlike the minimum distance indicator, higher
values of the exposure and per-person indicators are desirable, the cutoff
value t?xðyÞ for these two families is defined as:

t?xðyÞ ¼ min t :

P
n2N c

Pn1½0;t�ðIndx½n�ÞP
n2N c

Pn

" #
� 100≥ y

( )
ð8Þ

Then, for any two parametrizations (1) and (2) of Ind, for the minimum
distance indicator, we define the proportion of the stable targeted popula-
tion under the y% naive targeting approach as the following weighted Jac-
card indicator:

SnaiveðyÞmd ¼
P

n2N c
Pnð1� 11;t?;y;nÞð1� 12;t?;y;nÞP

n2N c
Pnð1�min½11;t?;y;n;12;t?;y;n�Þ

ð9Þ

where 1x;t?;y;n ¼ 1 0;t?x ðyÞ½ ÞðIndðxÞ½n�Þ. For the exposure and per-person
indicators:

SnaiveðyÞexp;pp ¼
P

n2N c
Pn11;t?;y;n12;t?;y;nP

n2N c
Pn max½11;t?;y;n;12;t?;y;n�

ð10Þ

where 1x;t?;y;n ¼ 1½0;t?xðyÞ�ðIndðxÞ½n�Þ. It is noteworthy that given the pre-
sence of potential ties (some cells may have the same accessibility value)
induced by Ind(x), the number of people belonging to the bottom y%of the
induced ranking population might differ under Ind(1) and Ind(2).
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Most-disadvantaged targeting approach. The approach to targeting
the most disadvantaged is akin to the naive targeting method, with a key
distinction. Rather than relying solely on a cutoff value determined by the
ranking of the population, which remains agnostic to the actual value of
the indicator, this approach determines the cutoff based on the indica-
tor’s specific value.

The most-disadvantaged targeting approach is akin to the naive tar-
geting approach. However, rather than relying solely on a cutoff value
determined by the ranking of the population, which would remain agnostic
to the actual value of the indicator, this approach determines the cutoff
based on the indicator’s specific value.

For the exposure and per-person indicators, we define the target group
as those with no exposure/per-person access under the indicator’s para-
meterization (x). As such, the proportion of the stable population in the
target group under any two parameterizations (1) and (2) is defined as the
resulting weighted Jaccard indicator:

Sexp;ppmost�dis ¼
P

n2N c
Pn1½0�ðIndð1Þ½n�Þ1½0�ðIndð2Þ½n�ÞP

n2N c
Pn max½1½0�ðIndð1Þ½n�Þ;1½0�ðIndð2Þ½n�Þ�

ð11Þ

For the minimum distance indicator, we define the most-
disadvantaged target population as that subgroup that performs y-times
worse than the average behavior across all citizens. As such, letting tmx be the
average value of the indicator under the parametrization (x), then:

Smd
most�disðyÞ ¼

P
n2N c

Pnð1� 11;tm1 ;y;n
Þð1� 12;tm2 ;y;n

Þ
P

n2N c
Pnð1�min½11;tm1 ;y;n

;12;tm2 ;y;n
�Þ ð12Þ

where 1x;tmx ;y;n
¼ 1 0;ytmx½ ÞðIndðxÞ½n�Þ.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The raw data are all publicly available. Detailed stability metrics for all cities
in the sample can be downloaded at this link. All other processed data are
availableupon request andcanbe exploredathttp://atgreen.hpc4ai.unito.it/.
To facilitate the use of our multi-indicator framework by policymakers, we
built an interactive web platform with five functionalities: EXPLORE,
MEASURE, COMPARE, CREATE and DRAW. After selecting the urban
center of interest, the platform allows the user to: EXPLORE green areas
identifiable in OpenStreetMap. The user can filter the green areas based on
detailed OSM tags, the size of the area (in hectares), and the name (as
reported in OSM). This functionality is mostly meant to provide an over-
view of the green features included in the indicators;MEASURE several pre-
computed green accessibility indicators at 9-arcs geographical granularity.
Policy recommendationsbypublichealth authorities and local governments
inspire the indicators proposed. The map depicts the spatial variation of
each indicator and the corresponding target. Summary metrics on the
overall performance of the city in absolute terms and relative to the other
cities are also provided; COMPARE the performance of each cell across any
two indicators, selected among the pre-computed metrics at the point
before. The comparison is provided by splitting the distribution of each
indicator into four groups based on the distribution of the metric weighted
by the population distribution and assigning each cell to the corresponding
group; CREATE their indicators by setting each parameter to the desired
level. The user can select the family of the indicator, the type of green (only
green features from OSM can be selected for performance reasons), the
minimum size of the green feature (in hectares), and, whenever applicable,
the time budget (in minutes). By setting the desired level of the green
accessibility (target), the user can then visualize areas satisfying the target
and areas that are missing out.; and;DRAW a new green space and evaluate
the impact on nearby areas in terms of enhanced green accessibility.

Code availability
The Python code developed for this project is available at this Github
repository.
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